Approximating maximum clique with a Hopfield network
نویسنده
چکیده
In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic.
منابع مشابه
A Saturated Linear Dynamical Network for Approximating Maximum Clique
We use a saturated linear gradient dynamical network for finding an approximate solution to the maximum clique problem. We show that for almost all initial conditions, any solution of the network defined on a closed hypercube reaches one of the vertices of the hypercube, and any such vertex corresponds to a maximal clique. We examine the performance of the method on a set of random graphs and c...
متن کاملNonpositive Hopfield Neural Network with Self-Feedback and its Application to Maximum Clique Problems
A clique of an undirected graph G (V, E) with a vertex set V and an edge set E is a subset of V such that all pairs of vertices are connected by an edge in E. The maximum clique problem (MCP) is to find a clique of maximum size of the graph G. Figure 1(b) shows a maximum clique of the graph Figure 1(a) with 10 vertices and 21 edges. It is one of the first problems which have been proven to be N...
متن کاملMicrocode optimization with neural networks
Microcode optimization is an NP-complete combinatorial optimization problem. This paper proposes a new method based on the Hopfield neural network for optimizing the wordwidth in the control memory of a microprogrammed digital computer. We present two methodologies, viz., the maximum clique approach, and a cost function based method to minimize an objective function. The maximum clique approach...
متن کاملApproximating the maximum weight clique using replicator dynamics
Given an undirected graph with weights on the vertices, the maximum weight clique problem (MWCP) is to find a subset of mutually adjacent vertices (i.e., a clique) having the largest total weight. This is a generalization of the classical problem of finding the maximum cardinality clique of an unweighted graph, which arises as a special case of the MWCP when all the weights associated to the ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 6 3 شماره
صفحات -
تاریخ انتشار 1995